Assessment of forecasting techniques for solar power production with no exogenous inputs
نویسندگان
چکیده
We evaluate and compare several forecasting techniques using no exogenous inputs for predicting the solar power output of a 1 MWp, single-axis tracking, photovoltaic power plant operating in Merced, California. The production data used in this work corresponds to hourly averaged power collected from November 2009 to August 2011. Data prior to January 2011 is used to train the several forecasting models for the 1 and 2 h-ahead hourly averaged power output. The methods studied in this work are: Persistent model, Auto-Regressive Integrated Moving Average (ARIMA), k-Nearest-Neighbors (kNNs), Artificial Neural Networks (ANNs), and ANNs optimized by Genetic Algorithms (GAs/ANN). The accuracy of the models is determined by computing error statistics such as mean absolute error (MAE), mean bias error (MBE), and the coefficient of correlation (R) for the differences between the forecasted values and the measured values for the period from January to August of 2011. This work also addresses the accuracy of the different methods as a function of the variability of the power output, which depends strongly on seasonal conditions. The findings show that the ANN-based forecasting models perform better than the other forecasting techniques, that substantial improvements can be achieved with a GA optimization of the ANN parameters, and that the accuracy of all models depends strongly on seasonal characteristics of solar variability. 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
Optimization of an artificial neural network dedicated to the multivariate forecasting of daily global radiation
This paper presents an application of Artificial Neural Networks (ANNs) to predict daily solar radiation. We look at the Multi-Layer Perceptron (MLP) network which is the most used of ANNs architectures. In previous studies, we have developed an ad-hoc time series preprocessing and optimized a MLP with endogenous inputs in order to forecast the solar radiation on a horizontal surface. We propos...
متن کاملCombination of Transformed-means Clustering and Neural Networks for Short-Term Solar Radiation Forecasting
In order to provide an efficient conversion and utilization of solar power, solar radiation datashould be measured continuously and accurately over the long-term period. However, the measurement ofsolar radiation is not available to all countries in the world due to some technical and fiscal limitations. Hence,several studies were proposed in the literature to find mathematical and physical mod...
متن کاملProbabilistic Solar Forecasting Using Quantile Regression Models
In this work, we assess the performance of three probabilistic models for intra-day solar forecasting. More precisely, a linear quantile regression method is used to build three models for generating 1 h–6 h-ahead probabilistic forecasts. Our approach is applied to forecasting solar irradiance at a site experiencing highly variable sky conditions using the historical ground observations of sola...
متن کاملDay-Ahead Solar Forecasting Based on Multi-level Solar Measurements
The growing proliferation in solar deployment, especially at distribution level, has made the case for power system operators to develop more accurate solar forecasting models. This paper proposes a solar photovoltaic (PV) generation forecasting model based on multi-level solar measurements and utilizing a nonlinear autoregressive with exogenous input (NARX) model to improve the training and ac...
متن کاملAssessment of Abarkouh Region to Construct Solar Sites
In recent decades, due to increasing prices of fossil fuels and environmental pollution resulting from the increased energy demand, researches on renewable energy sources have attracted lots of researcher’s attention. Limited investing sources and environmental issues are important factors effecting electricity generation sector. Minimizing costs and environmental damages are issues being consi...
متن کامل